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1. Why do you need HDLs? 
I remember talking a few years ago to another engineer at a startup company where we were both 
working. He was older than me - he had been one of the engineers that developed the original IBM 360 
computer. He was now complaining about the schematic capture tools we were learning. �I hate these 
tools,� he said. �They make it so tough. It used to be we would draw our schematics on paper with 
pencil. Make a mistake, simply erase it or start over. We didn�t have to make sure each wire was straight 
or the right width. We didn�t have to line up signal names or draw boxes with all these attributes. We 
didn�t have to learn a whole new computer system. We just gave it to the draftsmen who cleaned them 
up and put everything in order. I spend too much time drawing and not enough time designing.� 
 
This surprised me. I had worked one summer at a company where draftsmen cleaned up the schematics 
that I drew on paper. After that, every job I had, I used schematic capture tools. And loved them. To me, it 
took the power out of other people�s hands and put it into mine. It may have taken me longer in the short 
term, but in the long term I didn�t have to continually review schematics and look for miscommunications 
and mistakes. It meant that I could work my own hours without having to wait for a technician with whom 
I would have to review pages of schematics. 
 
The other advantage of schematic capture was that suddenly, I could simulate my design. Something that 
was painful, if at all possible, previously. I could run automatic design rule checks. Modifications to 
existing designs were much easier. And a minimal level of documentation was standardized and almost 
automatic. 
 
What the other engineer saw was the learning curve that he had to surmount rather than the eventual 
benefits. So now, many engineers may be inclined to react the same way to Hardware Description 
Languages (HDLs), the newest technology for designing circuits. But the biggest motivation for learning 
about HDLs is job security. In order to survive in the future, engineers will need to know HDLs. Industry 
analyst Dataquest (San Jose, CA) forecasts that most engineers will be switching to HDL-based tools over 
the next few years. About 12,000 design engineers used HDLs for some part of their designs in 1996. That 
number is predicted to grow to 67,000 by 1999. 
 
The primary push for this trend is that ASICs and FPGAs are growing in complexity, which can be better 
handled by HDLs. As more designers incorporate these devices into their designs, they are forced to 
change their design methods. The major advantages of HDLs are shown below. 

1. Ability to handle large, complex designs 
2. Different levels of abstraction 
3. Reusability 
4. Concurrency 
5. Timing 
6. Optimization 
7. Standards 
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8. Documentation 

2. What are HDLs? 
Hardware Description Languages use statements, like programming language statements, in order to 
define, simulate, synthesize, and layout hardware. The two main HDLs are Verilog and VHDL. There are 
other, limited capability, languages such as ABEL, CUPL, and PALASM that are tailored specifically for 
designing PALs and CPLDs. They are not robust enough to cover the complexity required for most FPGAs 
and ASICs. However, both Verilog and VHDL can be used to design anything from the most complex ASIC 
to the least complex PAL. This paper will use examples in Verilog, and will focus on that language, but the 
general attributes of that language can be ascribed also to VHDL. 
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Figure 2-1 State machine schematic 
// This module is used to implement the memory control state machine  
module state_machine(sysclk, input1, input2, state3); 
 
    /* INPUTS */ 
    input sysclk;  // system clock 
    input input1, input2; // inputs from the adder 
 
    /* OUTPUTS */ 
    output state3;  // this can be used as the write signal 
 
    /* DECLARATIONS */ 
    wire ps1;   // input to state1 flip-flop 
    wire ps2;   // input to state2 flip-flop 
    wire ps3;   // input to state3 flip-flop 
    reg  state1, state2, state3; // state bits 
 
    assign ps1 = ~state2 & ~state3; 
    assign ps2 = state1 & input1 & input2; 
    assign ps3 = state2 | (state3 & input1); 
 
    initial begin   // initialize the state machine 
     state1 = 0; 
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     state2 = 0; 
     state3 = 0; 
 end 
 
 always @(posedge sysclk) begin // clock in the new state on 
the 
     state1 <= #3 ps1;   // rising edge of sysclk 
     state2 <= #3 ps2; 
     state3 <= #3 ps3; 
 end 
endmodule 

Figure 2-2 State machine code 

A schematic for a simple state machine is shown in Figure 2-1. The equivalent Verilog code is shown in 
Figure 2-2. One important difference to note is that schematic capture is limited to just the design aspect 
that involves physically selecting and connecting devices. HDLs, on the other hand, are used for all stages 
of the design as is explained further below, where the advantages of HDLs are enumerated. 

2.1 Different levels of abstraction 
A hardware description language can be used to design at any level of abstraction from high-level 
architectural models to low-level switch models. These levels, from least amount of detail to most amount 
of detail are: 

• Algorithmic 
• Architectural 
• Register Transfer Logic (RTL) 
• Gate Level 
• Switch Level 

 
The top two levels use what are called Behavioral Models1, while the lower three levels use what are 
called Structural Models. Behavioral models consist of code that represents the behavior of the hardware 
without respect to its actual implementation. Behavioral models don�t include timing numbers. Buses 
don�t need to be broken down into their individual signals. Adders can simply add two or more numbers 
without specifying registers or gates or transistors. Algorithmic models represent simply algorithms that 
act on data. No hardware implementation is implied in an algorithmic model. Architectural models specify 
the blocks that implement the algorithms. Architectural models may be divided into blocks representing PC 
boards, ASICs, FPGAs, or other major hardware components of the system, but they do not specify how the 
algorithms are implemented in each particular block. 
 
Structural models consist of code that represents specific pieces of hardware. RTL specifies the logic on a 
register level. In other words, the simplest RTL code specifies register logic. Actual gates are avoided, 
although RTL code may use Boolean functions that can be implemented in gates. Gate level modeling 
consists of code that specifies gates such as NAND and NOR gates. Finally, the lowest level is that of 

                                            
1 I use my own nomenclature here for describing the various levels of abstraction. These levels do not have well-defined 
boundaries, and different individuals or organizations may have different, but equally valid, definitions. 



  Introduction to Verilog 

 4

switch-level models, which specifies the actual transistor switches that are combined to make gates. 
 
The advantage to HDLs is that all of these different levels of modeling can be done with the same 
language. This makes all the stages of design very convenient to implement. You don�t need to learn 
different tools. You can easily simulate the design at a behavioral level, and then substitute various 
behavioral code modules with structural code modules. For system simulation, this allows you to analyze 
your entire project using the same set of tools. First, the algorithms can be tested and optimized. Next, the 
behavioral models can be used to partition the hardware into boards, ASIC, and FPGAs. The RTL code can 
then be written and substituted for behavioral blocks one at a time to easily test the functionality of each 
block. From that, the design can be synthesized into gate and switch level blocks that can be resimulated 
with timing numbers to get actual performance measurements. Finally this low level code can be used to 
generate a netlist for layout. All stages of the design have been performed using the same basic tool. 

2.2 Reusability 
Reusability is a big advantage of HDLs. Code written in one HDL can be used in any system that supports 
that HDL. Schematics, on the other hand, are only useful in a particular schematic capture software tool. 
Even using the same tool, portability can be difficult if a module does not physically fit into the new 
design. A behavioral level HDL model, and most RTL level models can be easily used over and over again 
on multiple designs. 

2.3 Concurrency 
Concurrency is an advantage that HDLs offer over normal software languages which can also be used to 
simulate hardware. With a normal software language, statements are executed sequentially. With an HDL, 
on the other hand, provisions have been added to support concurrent execution of statements. This is an 
absolute necessity since in a hardware design, many events occur simultaneously. For example, in a 
synchronous design, all flip-flops on a particular clock line must be evaluated simultaneously. While 
normal software languages can be used to model simultaneous events, it is up to the programmer to add 
the mechanism for handling this. With an HDL, the mechanism is built into the language. 

2.4 Timing 
module state_machine(sysclk, input1, input2, state3); 
 . . . 
 // Output delays are specified with the # symbol 
    assign ps1 = #10 ~state1 & ~state2; 
    assign ps2 = #5 state1 & input1 & input2; 
    assign ps3 = #12 state2 | (state3 & input1); 
 
    initial begin  // initialize the state machine 
     #13;   // wait 13 time units before initializing 
     state1 = 0; 
     state2 = 0; 
     state3 = 0; 
 end 
 
 always @(posedge sysclk) begin 
     state1 <= #3 ps1; // output delay = 3 time units 
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     state2 <= #3 ps2; 
     state3 <= #3 ps3; 
 end 
endmodule 

Figure 2-3 Code with timing 

With schematic capture tools, when it comes time to simulate a design, the timing numbers are embedded 
in the netlist that is generated from the schematic. These timing numbers are based on parameters 
supplied by the vendors whose chips are being used. The user has some limited ability to change these 
numbers and some of the parameters. With HDLs, the timing numbers are explicitly stated in the code as 
shown in Figure 2-3. Nothing is hidden from the user, and the user has complete control over these 
numbers. This makes it much easier to control and optimize the timing of your design. 

2.5 Optimization 
HDLs are particularly useful for optimization. The most common method of designing ASICs and FPGAs 
involves writing an RTL level design and then using a software tool to �synthesize� your design. The 
synthesis process involves generating an equivalent gate level HDL description. Using various methods, 
the resulting description can be optimized to suit the particular target hardware. FPGAs, for example, 
typically have a very well-defined, large grain architecture. Mapping a gate level design to an FPGA would 
normally be difficult. However, you can write an RTL level model and synthesize it specifically for a 
particular FPGA. That same RTL description can be used in the future and synthesized for a particular 
ASIC technology. 
 

2.6 Standards 
Both major HDLs, Verilog and VHDL, are public standards. Verilog was initially a privately developed 
language, which was released to the public in 1990 and is now maintained by the Open Verilog 
International (OVI), a consortium of companies that sustain and improve the language. It has been adopted 
by the Institute of Electrical and Electronic Engineers (IEEE) as the standard IEEE-STD-1364. VHDL is the 
VHSIC (Very High Speed Integrated Circuit) Hardware Description Language, and is supported by the U.S. 
Department of Defense. It was adopted by the IEEE as the standard IEEE-STD-1076. Because these 
languages are public standards, it ensures that a design written in the language can be accepted by every 
software tool that supports the language. It also means that you are not tied in to purchasing the tools of 
any one company, but can choose from tools offered by many vendors. 

2.7 Documentation 
HDLs, being text-based, programming-type languages, lend themselves easily to documentation. This is 
not to say that the code is self-documenting. However, the code is relatively easy to read, and a code 
module shows much about the functionality, the architecture, and the timing of the hardware. In addition, 
as with any programming language, statements can be organized in ways that give more information about 
the design, and comments can be included which explain the various sections of code. It is up to the 
designer and the project leader to determine how to document the code, but the nature of HDLs certainly 
encourages this type of documentation. 
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2.8 Large, Complex Designs 
Large, complex designs require all of the above features. Because of this, HDLs are much better suited to 
large, complex designs than schematic capture or any other methods of design currently available. 

3. How do I use HDLs (specifically Verilog) ? 
This section describes the basics of programming in the Verilog language. Many of the concepts discussed 
below also apply to VHDL, although the syntax of the statements used to implement them is different. 

3.1 Basic Verilog Syntax 
The following subsections explain various parts of the syntax of Verilog statements. 

3.1.1 Comments 
Comments use the same format as C++. Single line comments begin with a // and end at the end of the 
line. An alternative way of writing comments is to enclose the comments between /* and */. Multiple 
lines comments may be constructed in this way. 

3.1.2 Integer and Real Number Constants 
The format for representing an integer constant is 
 
 <size>’<base><value> 
where 

<size> is the number of bits. If left out, the default value of 32 bits is used. 
<base> is b, o, d, or h for binary, octal, decimal, or hexadecimal. If left out, the default is 

decimal. 
<value> is any legal number for the specified base. A �z� or a �?� instead of a digit 

represents a high impedance signal in an integer. An �x� instead of a digit in an integer 
represents an undefined signal. 

 
Examples of integer constants are: 

• 171   - size = 32, base = 10 
• ’h2f3   - size = 32, base = 16 
• 12’b1111_0000_1011 - size = 12, base = 2, underscores can be used as place holders 

and 
 are ignored. 

• 3’b11?   - size = 3, base = 2, LSB is high impedance 
• 16’O101342  - size = 16, base = 8 
• 8’hZ   - size = 8, base = 16, (x and z values are extended to the full 

size) 
 
The format for representing a real number constant is to use normal decimal notation or scientific 
notation. Examples or real number constants are: 
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• 10.5   - decimal notation 
• 3.1415926  - decimal notation 
• 9.3e-3   - scientific notation 
• 7.7e12   - scientific notation 

3.1.3 String Constants 
String constants are used to generate output from the simulator. They are enclosed in double quotes and 
must be on a single line. Verilog uses the same escape characters as the C programming language, which 
are: 

• \t  tab 
• \n  newline 
• \\  backslash 
• \”  double quote 
• %%  percent sign 

 

3.1.4 Logic Values 
 

 

out 

a 

s0 

b 

s1 

a     b     s0     s1    out 
x     x     0      0       z 
0     x     1      0       0 
x     0     0      x       L (0 or z) 
x     1     0      x       H (1 or z) 
0     1     1      1       x 

 

Figure 3-1 The three unknown logic values 

In Verilog there are four logic values that a signal can have. They are 0, 1, x, and z. A z represents a high 
impedance value on a signal. An x represents an undefined value. An undefined output from a simulation 
can also be an undefined of type x, L, or H. An x value means the signal is completely unknown. An L 
value means the signal can be a 0 or z but not a 1. An H value means the signal can be a 1 or z but not a 
0. Figure 3-1shows a schematic and truth table that demonstrates these undefined outputs. 
 

3.1.5 Identifiers 
Identifiers are used to provide names for Verilog objects. Normal identifiers must begin with an 
alphabetical character (a-z, A-Z) or an underscore (_), and they can contain any alphanumeric character, 
dollar sign ($), or underscore. Escaped identifiers begin with a backslash and end with white space 
(space, tab, or newline), and can include any printable ASCII characters in between. Identifiers can be up 
to 1023 characters long. 
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Legal identifiers include: 

• john_smith 
• JohnSmith1 
• _john2john 

• \@my_house#3 Escaped identifier (must end with white space) 
 
Illegal identifiers include: 

• 2JohnSmith Does not begin with an alphabetic character or underscore 
• John*2  Includes a non-alphanumeric character 

 
Note that Verilog is case sensitive. This means that the variable TEMP is not the same as temp. All 
keywords are in lower case letters. Some software allows you to turn off case sensitivity, but this must be 
done carefully and for good reason, since it can potentially introduce errors by connecting separate signals 
to each other. 

3.1.6 Special Tokens 
Verilog uses tokens to specify built-in functions. System tasks and functions that are part of the Verilog 
language are identified by a leading dollar sign ($). The pound sign (#) is used to specify delay values for 
simulation. Special directives for the compiler are indicated with a grave accent (`).  

3.2 Register, Net, and Parameter Data Types 
There are three data types in Verilog. They are registers, nets, and parameters, each of which represents 
different aspects of the hardware. Nets represent physical connections between devices. Registers 
represent storage devices. Parameters are constants. 

3.2.1 Net Data Types 
Nets can be thought of as wires connected to outputs of devices. Like a wire, when the output changes, the 
value of the net immediately changes. Figure 3-2 shows a circuit with the nets labeled. When the output of 
a device changes, the values of all nets that are connected to that output are immediately changed.  
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net 

net 

 

Figure 3-2 Net data types 
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The following net types are used to model different design-specific and technology-specific functions. 
• wire, tri  standard interconnect wires 
• wor, trior  for connecting multiple drivers in a Wire-OR 
• wand, triand  for connecting multiple drivers in a Wire-AND 
• trireg  for nets with capacitive storage 
• tr1   for nets which are pulled up when not driven 
• tr0   for nets which are pulled down when not driven 
• supply1  for power rails 
• supply0  for ground rails 

 
Note that some wire types have two names. This allows the designer to select one or the other for better 
documentation purposes. 
 
Declarations of net data types are shown below. Note that the default net width is 1. In other words, a net 
is assumed to be one signal unless stated otherwise. 
 

wire  reset; // This is a single signal 
tr1 [4:0] address; // This is a bus consisting of 5 signals 

// that are pulled up 

3.2.2 Register Data Types 
Registers hold their values until a new value is explicitly assigned to them. Registers are used extensively 
in behavioral models and simulations because they can model hardware without the need for defining 
circuitry. There are five register data types as shown below. 

• reg   unsigned integer variable of any specified width 
• integer  signed integer variable, 32 bits wide. 
• real   signed floating-point variable, double precision 
• event  Boolean event 
• time   unsigned integer variable, 64 bits wide 

 

input1 

input2 
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out1

  reg_input2 

  reg_input1 

 

Figure 3-3 Register data type 

Figure 3-3 shows registers driving a circuit for simulation. Examples of declarations of variables of each 
register data type are shown below. 

 
integer i, j, count; 
real   x, y, val; 
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event  trigger, flag_set; 
time  t_setup, t_hold; 
reg [15:0] data; 

3.2.2.1 Integer and Real Data Types 
The integer and real data types are exactly like the C programming language definitions. They can be 
manipulated just like with any other programming language. They are used for computing values that are 
not part of the hardware, but are more commonly used in behavioral models and simulations. Examples of 
the use of these data types are shown below. 
 

integer cnt, num;  // Integers 
real  x, y, zCount; // Real numbers 
 
cnt = cnt + 1; 
num = cnt/2;   // Result will be truncated to an integer 
x = 157.3; 
y = x/2; 
zCount = 1.2e-5; 

3.2.2.2 Time Data Types 
A time data type refers to a timing number. Time data types are used to control the timing of execution of 
code. In Verilog, in order to model hardware, the relative timing of signal changes is very important. 
Verilog keeps track of the timing of events with respect to a time scale that is set by the user. It is 
important to remember that the Verilog software is running sequentially, and executing statements 
sequentially. But it is keeping track of an internal time counter. It is this internal counter to which time 
data types refer. A time variable is declared using the following format: 
 
 time time_variable; 

 
Time data types are discussed in more detail in the section on Execution Control Statements. 

3.2.2.3 Event Data Types 
An event is an occurrence at one time during simulation. Code can be written such that an event is 
signaled due to something occurring in the hardware. Based on when this event happens, other code can 
execute.  An event is declared using the following format: 
 
 event event_variable; 

 
An event is triggered by the following expression: 
 
 ->event_variable; 

 
This causes the event variable to be activated. Events are discussed in more detail in the section on 
Execution Control Statements. 
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3.2.3 Parameters 
Parameters are simply compile-time constants.  The format of a parameter declaration is shown in Figure 
3-4. Parameters can be used anywhere that a constant can be used. 
 
Parameters are useful for defining constants that are used throughout your code - for example, state 
machine states. By defining them as parameters, any change to the value of the constant needs to be done 
once, rather than searching through the code to find each instance of that value. 

module temp(in1, in2, out); 
    . . . 
    parameter p1 = 5; 
    . . . 
    wire [p1:0] signal1;   // A wire declaration using parameter 
    reg  store1, store2; 
    . . . 
    store1 = p1 & store2;  // An equation using a parameter 
    . . . 
endmodule 

Figure 3-4 Parameters 

3.3 Modules 
The essential building blocks for modeling hardware, is the Verilog module. A module simply represents a 
small, self-contained device within the design. This device may be a state machine within an ASIC, it may 
be an entire ASIC, or it may be a complete system. A simple module and its equivalent schematic are 
shown in Figure 3-5. 
 

 
in out 

clk outn 

module DFF(in, clk, clrn, 
  out, outn); 

input in, clk, clrn; 
output out, outn; 
. . . 
. . . 
// module body 
. . . 
. . . 

endmodule 

DFF 

clrn  

Figure 3-5 Module example 

Note that the module has what are called module ports. These ports are equivalent to the I/O pins of the 
hardware device. The ports must be declared as either input, output, or inout (bi-directional) ports in the 
body of the module. These ports, and all internal signals, must be declared using the appropriate data 
type. Figure 3-6 shows a diagram that is useful for understanding how to declare signals on a module 
boundary. The rules to follow are: 

• An input port can be driven by a net or a register, but it can only drive a net. 
• An output port can be driven by a net or a register, but it can only drive a net. 
• An inout port can be driven by a net, and it can only drive a net. 
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• If a signal is assigned a value by a procedural block, then it is a register. 
 
The last rule means that if you want a signal to change when a certain piece of code is executed, 
regardless of what may be driving it, then that signal must be a register. A wire always takes the value of 
whatever is driving it. 
 
As shown in Figure 3-7, modules may be embedded within modules. In this way, large devices are built 
upon smaller devices. There is an instance name associated with each module so that a single module can 
be used multiple times within a larger module. In this case, the DFF module is used four times within the 
REG4 module, with instance names ff0, ff1, ff2, and ff3. Remember that these modules exist 
simultaneously as separate devices operating concurrently with each other. 
 

Net or register
net

Module Boundary

net

netnet

Net or register
Input Port Output Port

Inout Port

 

Figure 3-6 Module data types 

 
 module REG4(d, clk, clrn, q, qn); 

input [3:0] d; 
input clk, clrn; 
output [3:0] q, qn; 
DFF ff0(d[0], clk, clrn, q[0], 
qn[0]); 
DFF ff1(d[1], clk, clrn, q[1], 
qn[1]); 
DFF ff2(.in(d[2]), .clk(clk), 

.clrn(clrn), .out(q[2]), 

.outn(qn[2])); 
DFF ff3(.in(d[3]), .clk(clk), 

.clrn(clrn), .out(q[3]), 

.outn(qn[3])); 
endmodule 

DFF DFF . . . 

ff0 ff3 

q qn 

d clk clrn 

REG4 

 

Figure 3-7 Nested modules 

There are also modules that are built into the Verilog language for convenience. These modules are known 
as primitives, and are shown in Table 3-1. 
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Primitive Function Expandable? 
not(out, in) inverter expandable 

outputs 
buf(out, in) buffer expandable 

outputs 
and(out, in1, in2) logical AND expandable inputs 
or(out, in1, in2) logical OR expandable inputs 
xor(out, in1, in2) logical exclusive OR expandable inputs 
nand(out, in1, 
in2) 

logical NAND expandable inputs 

nor(out, in1, in2) logical NOR expandable inputs 
xnor(out, in1, in2) logical exclusive NOR expandable inputs 
bufif1(out, a, e) tri-state buffer enabled by e = 

1 
not expandable 

bufif0(out, a, e) tri-state buffer enabled by e = 
0 

not expandable 

notif1(out, a, e) tri-state inverter enabled by e 
= 1 

not expandable 

notif0(out, a, e) tri-state inverter enabled by e 
= 0 

not expandable 

Table 3-1 Verilog Primitives 

One unique characteristic of some of the built-in modules is that the number of pins is expandable, as 
shown in Figure 3-8. Gates that have more than one input can have any number of inputs with a single 
output. The not and buf gates must have a single input but can have any number of outputs. All outputs 
change with zero delay with respect to the inputs, unless a delay number is explicitly stated as shown in 
Figure 3-9. If one delay is given, it is used for all output changes. Three delays can be given, separated by 
commas, to specify rise, fall, and turn-off delays respectively. Three delays separated by colons are used 
to specify minimum, typical, and maximum delays respectively. 
 

 
out 

out 

out 

in4 
in3 

in2 
in1 

in3 

in2 

in1 

in2 

in1 
and(out, in1, in2); 

and(out, in1, in2, in3); 

and(out, in1, in2, in3, in4); 
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Figure 3-8 Expandable pins on primitives 

 
bufif0 #(3,3,7) (out, in, ctrl);  // rise, fall, turn-off times 
and #(2,3) (out, in1, in2);   // rise, fall  
or #(3.2:4.0:6.3) o1(out, in1, in2); // min:typ:max 
nand #(1:2:3, 2:3:4) n1(out, in1, in2); // rise min:typ:max, 

// fall min:typ:max 

Figure 3-9 Delay specifications in primitives 

When instantiating modules, there are two ways to connect signals to the ports of the module. Using the 
first method, the signals are matched in the same order as the ports in the declaration of the module. The 
second method uses the following syntax to match ports to signals: 
 
  .actual_port_name(net_connected_to_port) 

 
This second method is the preferred method since it does not rely on knowing the order of the ports in the 
module declaration. Using this method, ports can easily be added or removed from the module declaration 
and the instantiation without accidentally shorting nets. 

3.4 Operators and Expressions 
The operators used in Verilog are similar to those used in the C programming language with some extra 
operators specifically for hardware design. They are shown in the table below. 
 

Symbol Operator type 
+  -  *  / arithmetic 
>  >=  <  <= relational 
!  &&  || logical 
==  != logical equality 
?: conditional 
% modulus 
===  !== case equality 
~  &  |  ^  ~^ bit-wise 
&  ~&  |  ~|  ^  
~^ 

unary reduction 

<<  >> shift 

Table 3-2 Verilog operators 

Because of the use of undefined values and high impedance values, Verilog uses two kinds of tests for 
equality - logical equality and case equality. Logical equality tests the equality of two well-defined signals. 
If one signal is not defined as a 1 or 0, then the result of the equality is undefined. Case equality is 
needed for simulation and debugging, where you may need to know whether a signal is undefined or high 
impedance. The logic tables for these operators are shown below. 
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== 0 1 x z
0 1 0 x x 
1 0 1 x x 
x x x x x 
z x x x x 
     

Table 3-3 Logical equality 

 
=== 0 1 x z

0 1 0 0 0 
1 0 1 0 0 
x 0 0 1 0 
z 0 0 0 1 

Table 3-4 Case equality 

The conditional operator is used to assign one of two results based on the result of an expression. The 
following conditional sets a to 10 if x equals 5, otherwise it sets a to 9. 
 
   a = (x == 5) ? 10 : 9; 

 
The order of precedence for the operators is shown in the table below. 
 

Operator Precedence 
!  &  ~&  |  ~|  ^  ~^  
+  - (unary operators) 

highest 

*  /  %  
+  -  
<<  >>  
<  <=  >  >=  
==  !=  ===  !==  
&  ~&  ^  ~^  
|  ~|  
&&  
||  
?: lowest 

Table 3-5 Operator precedence 

There is also a concatenate and replicate operator which acts like parentheses, except they use curly 
brackets to concatenate nets into a wider net. The following three statements are equivalent: 
 
   a = {2’b11, 4’h6}; // concatenation 
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   a = {2{3’b110}};  // replication 
   a = 6’b110110; 
 

A constant that appears in a concatenation must have an explicit width. The size of the concatenation is 
the sum of all of the widths of the concatenated values. 
 
Unary reduction operators take a bus and operate on all bits to reduce it to a single bit. For example, the 
XNOR unary reduction operator produces the following result by XNORing all bits of a word together. 
 
   ~^4’b0110 is reduced to 1’b1 

3.5 Continuous Assignments 
Continuous assignments are used to assign values to nets. A continuous assignment consists of an 
expression that is continuously being evaluated, so that when one variable on the right side of the 
equation changes, the left side also changes. In this way, continuous assignments can be used to model 
combinatorial logic. Some continuous assignments are shown below. 
 

wire out1;    // out1 is declared as a wire 
assign out1 = in1 & ~in2; // continuous assignment - whenever 

// in1 or in2 changes, out1 will  
// also change 

 
wire [7:0] net1 = in1 ^ in2; // declaration and assign statement 
 
assign #5 out1 = in1 | in2; // assignment with delay - out1 

// changes 5 time units after in1 or 
// in2 change 

 

There is one aspect of assignment statements that you need to be aware of. Since your Verilog simulator 
will run on a sequential computer, even though assigned nets should be updated immediately, the 
computer cannot really update all assign statements concurrently. There will be an order to them. The 
code in Figure 3-10 illustrates this problem. 
 

module test; 
    reg  in1, in2;  // in1, in2 are declared as registers 
    reg  temp;   // temporary register 
 
    wire out1;   // out1 is declared as a wire 
    assign out1 = in1 & ~in2; // continuous assignment 

 
    initial begin   // initialize the values 
 in1 = 1; 
 in2 = 0; 
 
 #1 temp = out1;  // put the value of out1 into temp 

$display(“At time %0d, out1 = %1b, temp = %1b”, 
   $time, out1, temp); 

#1 in1 = 0;   // change the value of in1 
temp = out1;  // put the value of out1 into temp 
$display(“At time %0d, out1 = %1b, temp = %1b”, 
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   $time, out1, temp); 
#1; 
$display(“At time %0d, out1 = %1b, temp = %1b”, 

   $time, out1, temp); 
    end 
endmodule 

Figure 3-10 Continuous assignments 

The output of the code will look like: 
 
  At time 1, out1 = 1, temp = 1 
  At time 2, out1 = 1, temp = 1 
  At time 3, out1 = 0, temp = 1 
 

The reason that out1 does not change immediately at time 2 is that the Verilog simulator, in this case, 
executes each statement in the module until there is a delay statement. Then it immediately goes back to 
reevaluate each continuous assign statement. After the delay, the value of out1 is updated, but the value 
of temp is not updated since temp is a register and is only updated when its assignment statement is 
executed. 

3.6 Execution Control Statements 
There are a number of ways of controlling the flow of execution of the Verilog code. Controlling the flow is 
essential for creating models of real hardware. Execution control allows you to design state machines, 
pipelines, and essentially any synchronous or conditional logic. 

3.6.1 Timing Control Statements 
One form of execution control is timing control. This involves delaying code from being executed by a 
certain amount of time, or waiting for an event to occur before executing code. The three forms of timing 
control statements are simple delay, event-triggered timing, and level-triggered timing. 

3.6.1.1 Simple Delay 
Simple delay involves waiting a certain amount of time before executing code. This is accomplished with 
the use of the pound (#) symbol. This symbol tells the Verilog simulator to wait for the specified number 
of time units before executing the following code. 
 

module hello_world; 
 

time t1, t2; 
 

initial begin 
       t1 = 10; 

    t2 = 20; 
end 

 
initial begin 
    #t1 $display(“%0d HELLO”, $time); 
    #t2 $display(“%0d world!”, $time); 
end 
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initial begin 
    #t2 $display(“%0d there”, $time); 
end 

 
endmodule 

Figure 3-11 Simple delay 

The code in Figure 3-11 above produces the following results: 

   10 HELLO 
 20 there 
 30 world! 

3.6.1.2 Event-Triggered Delay 
An event is an occurrence at one time during simulation. Based on when this event happens, other code 
can execute. The @ symbol is used to tell Verilog to hold off executing the following statement until the 
specified event has occurred. Events are useful for modeling interrupts. They can also be used for high 
level modeling of handshaking between two pieces of hardware. The code in Figure 3-12 produces the 
same output as the code in Figure 3-11above. 
 

module hello_world; 
 event e1, e2, e3; 
 initial begin 
  #10 ->e1; 
 end 
 initial @e1 begin 
  $display(“%0d HELLO”, $time); 
  #10 ->e2; 
 end 
 initial @e2 begin 
  $display(“%0d there”, $time); 
  #10 ->e3; 
 end 
 initial @e3 $display(“%0d world!”, $time); 
endmodule 

Figure 3-12 Event-triggered delay 

3.6.1.3 Level-Triggered Delay 
Level-triggered delay is similar to event-triggered delay, except that any condition can be used to begin 
executing the following code. A wait statement is used along with an expression in parentheses. Once the 
expression becomes true, the code executes. The code executes only once, even if the expression remains 
true. 
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module hello_world; 
reg a; 
initial begin 
    a = 0; 
    #10 a = 1; 
    #10 a = 2; 
    #10 a = 3; 
end 
initial begin 
    wait(a === 1) $display(“%0d HELLO”, $time); 
    wait(a === 2) $display(“%0d there”, $time); 
    wait(a === 3) $display(“%0d world!”, $time); 
end 
endmodule 

Figure 3-13 Level-triggered delay 

3.6.1.4 Intra-Assignment Timing Control 
There are two different potential problems that can occur with simple delays, and Verilog has means of 
solving both of them. The first can be demonstrated by two signals that swap values at a given time. If the 
code is written with a simple delay at the beginning of the line, as in Figure 3-14, a race condition occurs 
where it is unclear what the final values will be. By placing the delay inside the assignment statement, 
Verilog evaluates the right hand side of the equation immediately and stores the value. When the specified 
time arrives it assigns that value. There is no race condition, as shown in Figure 3-15. 
 

module race(clock); 
    input clock; 
    reg a, b; 
 
    initial begin 

a = 0; 
b = 1; 

    end 
 
    // At 5 time units after the clock edge, there is a race 
    // between a and b. We don’t know what the final value will 
    // be, or there may be an infinite loop. 
    always @(posedge clock) begin 

#5 a = b; 
    end 
    always @(posedge clock) begin 

#5 b = a; 
    end 
endmodule 

Figure 3-14 Simple delay with race condition 
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module no_race(clock); 
    input clock; 
    reg a, b; 
 
    initial begin 

a = 0; 
b = 1; 

    end 
 
    // At the clock edge, the future values of a and b are 
    // determined and stored. At 5 time units after the clock 
    // edge, a and b are assigned the stored values. There is no 
    // race condition. 
    always @(posedge clock) begin 

a = #5 b; 
    end 
    always @(posedge clock) begin 

b = #5 a; 
    end 
endmodule 

Figure 3-15 Intra-assignment timing control - no race condition 

3.6.1.5 Blocking and Non-blocking Assignments 
The other issue with simple delays is that it can be extremely useful to set up an output to change at a 
particular time and then continue to execute the remaining code. The kind of delayed assignments that we 
have seen so far are called blocking assignments because they block the remaining code from executing 
until the delay has passed. Non-blocking assignments set up the output to change at a future time, and 
continue executing the next statements. Non-blocking assignments simply use <= rather than = as shown 
in Figure 3-16. 
 

module test_mod(clock); 
    input clock; 
    wire clock; 
    reg ff1, ff2, ff3, ff4;  // models of flip-flops 
    initial begin 

ff1 = 0; 
ff2 = 0; 
ff3 = 0; 
ff4 = 0; 

    end 
 
    // Blocking assignments 
    always @(posedge clock) begin 

ff1 = #3 ff2;   // ff1 changes at time 3 
ff2 = #3 ~ff1;   // ff2 changes at time 6 

    end 
 
    // Non-blocking assignments 
    always @(posedge clock) begin 

ff1 <= #3 ff2; // Both flip-flops change simultaneously 
ff2 <= #3 ~ff1; // at time 3 with no race conditions. 

    end 
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endmodule 

Figure 3-16 Non-blocking assignments 

3.6.2 Conditional Statements 
Conditional statements have several different sections of code. Which section of code is actually executed 
depends on the value of the specified condition. 

3.6.2.1 If and If-Else Statement 
With the if and if-else statements, a single condition is given. If the condition is true, the statement after 
the if statement is executed. If it is false and there is an else condition, the statement after the else is 
executed. Each else statement is associated with the nearest if statement preceding it. The code in Figure 
3-17 demonstrates nested if-else statements. 
 

if (a > b) begin  // beginning of outer if 
   // begin-end allows multiple statements 

// to be executed by the if statement 
    b = b + 1; 
    if (a == b)  // beginning of inner if 
 flag = 1; 
    else begin  // else belongs to inner if 
    // begin-end allows multiple statements 

// to be executed by the else statement 
 flag = 0; 
 count = count + 1; 
    end 
end 

Figure 3-17 If-Else statement 

3.6.2.2 Case Statement 
With the case statement, a single expression is given and multiple possible statements can be executed 
depending on the value of the expression. An example is given in Figure 3-18. 
 

case (addr)   // beginning of case statement 
    2’b00 : data = x; 
    2’b01 : data = y*2; 
    2’b0x : x = 3; 
    2’b0z : y = 1; 
    default :  // execute this statement if none of the 

// other cases are true (optional) 
begin 

     data = 0; 
     x = 0; 
     y = 0; 
 end 
endcase   // this ends the case statement 

Figure 3-18 Case statement 
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Note that the case statement does a bit-by-bit comparison. The default statement is optional. If it is used, 
then when none of the other cases is true, the default statement will be executed. If it is not used and all 
of the cases are false, then no statements will be executed. If more than one case is true, the first true 
case is selected and the specified statement is executed. Then execution continues after the endcase 
statement. The second case is not executed. 

3.6.3 Looping Statements 
Looping statements are used to execute code several times. The three types of loops are repeat loops, 
while loops, and for loops. 

3.6.3.1 Repeat Loop 
The repeat loop simply executes the following statement a fixed number of times. As in previous 
examples, the begin-end construct may be used to repeat sections of code. 

 
repeat(100) $display(“I will not chew gum in class!”); 

3.6.3.2 While Loop 
The while loop allows code to be executed as long as the specified condition is true. 
 
 count = 10;     // initialize count 
 while (count > 0) count = count - 1;// stupid way to set 

// count to zero 
while (count < 10) begin  // execute code while count<10 
 count = count + 1;  // increment count 
 $display(“Count = %0d”, count); 
 #10;     // delay 10 time units 
end 

3.6.3.3 For Loop 
The for loop allows code to be executed as long as the specified condition is true. It also sets up initial 
conditions and conditions to be executed on each loop. The following for loop executes exactly the same 
as the above while loop. 

// execute code while count < 10 
for (count = 0; count < 10; count = count + 1) begin 
    $display(“Count = %0d”, count); 
    #10; 
end 

3.7 Functions and Tasks 
Functions and tasks are small sections of code that are used frequently throughout a design. There are a 
few very important differences between a task and a function. A task can contain any kind of code and any 
number of inputs and outputs. It can contain delays, making it useful for state machines or other types of 
sequential hardware. Functions, on the other hand, cannot include any delay information. Functions are 
executed in zero time (simulation time). Functions must have at least one input and must have exactly one 
output. Figure 3-19 and Figure 3-20 show examples of a function and a task, respectively. 
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module test_module; 
    reg [7:0] input; 
    reg [7:0] filter; 
    reg  output; 
    . . . 
    output = test_function(input, filter); 
    . . . 
 
function test_function;  // this is the function declaration 
    input [7:0] data;  // these are the inputs 
    input [7:0] mask; 
 
    reg temp;   // this is an internal register 
 
    begin    // begin the function logic 
 temp = data & mask; 
 if (temp > 16) 
  test_function = 1; // this is the output 
 else 
  test_function = 0; // this is the output 
    end 
endfunction 
 
endmodule 

Figure 3-19 Function in a module 

module test_module; 
    reg [7:0] input; 
    reg   out1; 
    reg [7:0] out2; 
    . . . 
    test_task(input, out1, out2); 
    . . . 
 
task test_task;   // this is the task declaration 
    input [7:0] in_data; // these are the inputs 
    output      out_data1; // these are the outputs 
    output [7:0] out_data2; 
    out_data1 = #3 ^in_data; 
    out_data2 = #2 in_data & 8’h7E; 
endtask 
 
endmodule 

Figure 3-20 Task in a module 

3.8 Procedural Blocks 
Finally, the various sections of code must be put into procedural blocks, which specify how to execute each 
section.  There are two types of procedural blocks - the initial  block and the always  block. The initial 
block begins with the keyword initial, and it executes exactly once, immediately when the simulation 
begins at time 0. The always block begins with the keyword always, and executes each time the condition 
following the always keyword is met. The procedural block can be a single statement, but is more usually 
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an entire set of statements that are grouped together by a begin-end construct or a fork-join construct. 
The difference between these two constructs is that a begin-end construct surrounds code that is to be 
executed in sequence. A fork-join construct surrounds code that is executed in parallel. In other words, 
each statement inside a fork-join construct is executed simultaneously. Examples of procedural blocks are 
given in Figure 3-21. 
 

module procedures; 
 
    reg a, b, c, d; 
 
    // initial block with a begin-end construct 
    initial begin   

a = 0; 
b = 0; 
c = 0; 
d = 0; 

    end 
 
    // always block with begin-end construct 
    always @(posedge clock) begin 

a = #3 ~b;   // a changes at time 3 
b = #3 ~c;   // b changes at time 6 

    end 
 
    always @(posedge clock) fork 

c = #3 ~b;   // both c and d change 
// simultaneously at time 3 

d = #3 ~a;   // (watch for race conditions). 
    join 
 
endmodule 

Figure 3-21 Procedural blocks 

3.9 Compiler Directives 
The Verilog compiler has directives that allow the user flexibility in writing code. Some of the more 
commonly used directives are given in the table below. 
 

Directive Use 
`timescale sets the time unit and its 

precision 
`include include other files 
`define defines compile-time constants 
`ifdef    `else    `endif selectively compile code 

Table 3-6 Common compiler directives 

3.9.1 Timescale Directive 
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The syntax of the `timescale directive is 
 
  `timescale <time_unit> / <time_precision> 

 
where <time_unit> specifies the unit of measurement for delays and timing, and <time_precision> 
specifies how to round delay numbers before using them in simulation. Both of these are represented by 
the number 1, 10, or 100 followed by s for seconds, ms for milliseconds, us for microseconds, ns for 
nanoseconds, ps for picoseconds, or fs for femtoseconds. The <time_precision> must be smaller than or 
equal to the <time_unit>. It is allowed to specify multiple modules running at different time scales, but 
the simulation runs using the smallest time precision value in order to be accurate for the smallest 
precision specified in the design. Accuracy is improved but simulation speed is reduced for a greater 
difference between the two values. 

3.9.2 Include Directive 
The `include directive simply includes a text file into the current file. This is useful for including common 
definitions and declarations that are used in multiple code files. The syntax of this directive is 
 
  `include “<file name>” 

  
The file name can be absolute, including the full path, or relative to the current path. Examples of this 
directive are: 
 
  `include “global.v” 
  `include “/usr/bobz/project/defs.vh” 
  `include “../../library/adder.v” 

3.9.3 Define Directive 
The syntax of the `define directive is 
 
  `define <name> <macro_text> 

 
This tells the compiler to substitute <macro_text> wherever the construct `<name> is used in the code. 
The following example illustrates this. 
 
 `define COUNT_inc count + 1 
 ‘define out_delay #4 
 . . . 
 count = `out_delay `COUNT_inc; // This increments the counter 

// with a specific delay, 
// using a simple text 
// substitution 
 

Note that a command line option can also be given to override definitions that are specified with a 
compiler directive. 
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3.9.4 Ifdef-Else-Endif Directive 
The `ifdef, `else and `endif directives are used to selectively compile code using conditions that are 
determined at compile time. The formats of these directives are: 
  `ifdef <definition_name> 
  . . . 
  `else    // optional else 
  . . . 
  `endif 

 
If <definition_name> has been defined, either by a `define directive or by a command line option, then 
the code following the `ifdef is compiled and the code following the `else is ignored. If 
<definition_name> has not been defined, then the code following the `ifdef is ignored while the code 
following the `else is compiled. Note that the `else directive is optional. An example is given below. 
 
  `define HELLO 1 

. . . 
`ifdef HELLO 

  . . .    // this code is compiled 
  `else 
  . . .    // this code is ignored 
  `endif 
  `ifdef GOODBYE 
  . . .    // this code is ignored 
  `endif 

3.10 System Tasks and Functions 
There are a number of system tasks and functions that are included in Verilog that provide functionality 
that is needed or helpful for running and debugging code. Several of the more commonly used ones are 
given in the table below. 
 

Task or 
Function 

Use 

$time a variable that holds the current simulation 
time 

$display creates formatted output to the screen 
$monitor output variables only when they change 
$stop stop simulating and enter debug mode 
$finish finish the simulation 

Table 3-7 Common system functions and tasks 

An example of the use of these system functions and tasks are shown in Figure 3-22. 
// the following code provides simulation stimulus to a design 
integer cnt; 
 
initial begin 
    cnt = 0;    // initialize cnt 
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    // display any of these values whenever they change (except $time) 
    // system task is not monitored) 
    $monitor($time, a, b, c); 
 
    // this monitor statement uses an optional format specifier 
    $monitor($time, “%b %h %d %o”, a, b, c); 
end 
always @(posedge clk) begin 
    cnt = cnt + 1; // increment cnt on each rising clock 
 
    // the display outputs each time it is executed - 
    // display the time and the value of cnt on each rising clock 
    $display(“time = %0d, cnt = %0d”, $time, cnt); 
 
    if (cnt == 10) 
 $finish;   // end simulation after 10 clocks 
    else if (cnt > 10) 
 $stop;   // this point shouldn’t be reached. 
     // if it gets reached, stop the 
end     // simulation and enter the debugger 

Figure 3-22 System functions and tasks 

4. Where do I get more information? 
The following references are useful for obtaining more information about HDLs in general and Verilog in 
specific.  

4.1 Books 
1. Zeidman, Bob, Verilog Designer's Library, Prentice-Hall, 1999 
2. Zeidman, Bob, Introduction to Verilog, IEEE Press, 2000  
3. Sutherland, Stuart, The Verilog Pli Handbook : A User's Guide and Comprehensive Reference on 

the Verilog Programming Language Interface, Kluwer Academic Publishers, 1999  
4. Sternheim, E., Singh, R., Trivedi Y., Digital Design with Verilog HDL, Automata Publishing 

Company, 1990  
5. Palnitkar, Samir, Verilog HDL: A Guide to Digital Design and Synthesis, Prentice-Hall, 1996  
6. Navabi, Zainalabedin, Verilog Digital System Design, McGraw Hill Text, 1999  
7. Moorby, P. R., and Thomas, D. E., The Verilog Hardware Description Language, Kluwer 

Academic Publishers, 1998  
8. Bhasker, J., Verilog HDL Synthesis, A Practical Primer, Star Galaxy Press, 1998  
9. Bhasker, J., A Verilog HDL Primer, Star Galaxy Press, 1998  

4.2 Internet 
1. www.chalknet.com - courses on engineering from The Chalkboard Network 
2. cmp.lang.vhdl - VHDL usenet newsgroup 
3. vhdl.org - VHDL International Users� Forum (VIUF) web site 
4. www.vhdl.org/vhdl_intl/ - VHDL International home page 
5. www.doulos.co.uk/hegv/index.htm - A Hardware Engineer�s Guide to VHDL, Doulos Company 
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6. www.acc-eda.com/h_intro.htm - An Introduction to VHDL for Synthesis and Simulation, David 
Pellerin, President, Accolade Design Automation, Inc 

7. src.doc.ic.ac.uk/public/usenet/news-FAQS/comp.answers/verilog-faq - information about 
Verilog  

8. www.teleport.com/~celiac/verilog-manual.html  - Hyde, D., Bucknell Handbook on Verilog 
HDL 

9. www.doulos.co.uk/hdgv/index.htm - A Hardware Designer�s Guide to Verilog, Doulos 
Company 

10. www.angelfire.com/in/verilogfaq/index.html - Alternate Verilog FAQ, Rajesh Bawankule 
11. www.angelfire.com/in/rajesh52/verilog.html - Rajesh Bawankule's Verilog and EDA page, 

Rajesh Bawankule 

About the Author 
Bob Zeidman is the president of Zeidman Consulting (www.ZeidmanConsulting.com), a contract research 
and development firm.  Since 1983, he has designed ASICs, FPGAs, and PC boards for RISC-based parallel 
processor systems, laser printers, network switches and routers, and other real time systems. His clients 
have included Apple Computer, Cisco Systems, Intel, Quickturn Design Systems, and Texas Instruments. 
Previously, Bob was the president of The Chalkboard Network (www.chalknet.com), an e-learning company 
for high tech professionals. Among his publications are technical papers on hardware and software design 
methods as well as three textbooks � Designing with FPGAs and CPLDs, Verilog Designer's Library, and 
Introduction to Verilog. He has taught courses at engineering conferences throughout the world. Bob earned 
bachelor's degrees in physics and electrical engineering at Cornell University and a master's degree in 
electrical engineering at Stanford University. 


	Why do you need HDLs?
	What are HDLs?
	Different levels of abstraction
	Reusability
	Concurrency
	Timing
	Optimization
	Standards
	Documentation
	Large, Complex Designs

	How do I use HDLs (specifically Verilog) ?
	Basic Verilog Syntax
	Comments
	Integer and Real Number Constants
	String Constants
	Logic Values
	Identifiers
	Special Tokens

	Register, Net, and Parameter Data Types
	Net Data Types
	Register Data Types
	Integer and Real Data Types
	Time Data Types
	Event Data Types

	Parameters

	Modules
	Operators and Expressions
	Continuous Assignments
	Execution Control Statements
	Timing Control Statements
	Simple Delay
	Event-Triggered Delay
	Level-Triggered Delay
	Intra-Assignment Timing Control
	Blocking and Non-blocking Assignments

	Conditional Statements
	If and If-Else Statement
	Case Statement

	Looping Statements
	Repeat Loop
	While Loop
	For Loop


	Functions and Tasks
	Procedural Blocks
	Compiler Directives
	Timescale Directive
	Include Directive
	Define Directive
	Ifdef-Else-Endif Directive

	System Tasks and Functions

	Where do I get more information?
	Books
	Internet


